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Boundary conditions have been found for flow of a rarefied multi-
component gas over a sublimating wall. For a multi-componernt gas
the boundary conditions obtained are a generalization of the well-
known conditions for slip and temperature jump in the case of a per~
meable surface.

It is well known that to solve the coupled problem
inthe case of sublimation of a wall washed by a stream
of any thermally conducting gas, in order to have a
single-valued transition through the wall-gas interface,
besides the condition obtained from the laws of con~
servation, additional relations are required [1]. For
a sufficiently dense mixture of gases, the assumption
is made that the temperature and the tangential veloc-
ity components are equal on the two sides of the inter-
face. The additional relation for the mixture composi-
tionat the interface depends on the kinetics of sublima-
tion, Inparticular, if sublimation proceeds according to
diffusion kinetics, the additional relation is the depen-
dence of partial pressure of the vapor on temperature.

For sublimation of a wall into a stream of rarefied
gas the additional relations must be different. Instead
of the conditions for no slip and equality of temperature
at the interface, discontinuities in velocity and tem-
perature must be taken into account. In addition, lack
of equilibrium in sublimation must be taken into account.
It must be expected that, in the case of a nonzero
vertical velocity component at the wall, the additional
boundary conditions will differ from the conditions
valid in the absence of flow of mass through the wall.

The derivation of these conditions for a gas-vapor
mixture is analogous to that of similar conditions for
a homogeneous gas given in [2]. The distribution func-
tion in the 13-moment approximation must be written
for each component of the mixture. Some arbitrariness
is possible in the choice of a local Maxwellian distri-
bution function, about which we may carry out anex-
pansion in terms of Hermite polynomials [3]. In the
present paper we use the mean mass flow velocity in
the local Maxwellian function, and all the components
of the mixture have the same temperature. The dis~
tribution function for an individual component has the

following form {4]:
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where r=1, 2,3

— PN g = Yuiuif(r)dg~ p"7&; is the viscous stress
tensor of component r; 8§ = S’uiuzf(” dE is the binary

heat flux of component r; and V{" = —(Ir-)- ufdE
Y
is the diffusion velocity of component r.
The viscous stress tensor and the heat flux of the
mixture are determined by summing the appropriate

moments for the individual components:
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We shall assume, as was done in [2, 5], that a def-
inite fraction a(T) of the molecules of the incident
molecules of type r is reflected specularly, while the
remaining molecules are absorbed by the wall andthen
emitted diffusely with the Maxwellian distribution cor-
responding to the wall temperature*:
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The coefficient B(!) for a subliming component (r =
= 1) is determined by the rate of sublimation, and the
coefficients B<2), 6(3) ... B@for the remaining com-
ponents of the gas mixture are determined by the con-
ditions for absence of mass flux of these components
through the wall.

We shall choose the axis x; and x4 along the normal
to the wall surface and along the surface, respec-
tively, making the assumption that the shape of the

*The sublimating wall is displaced in the direction
of the x; axis with velocity D, and therefore the second
term in the boundary condition (2) must have the fol-
lowing form:
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But the velocity D is considerably less than the mass
flow velocity of the vapor vy, because the ratio of the
density of the gas mixture to that of the solid is small.
Therefore, we may neglect terms containing D in sub-
sequent computations, which aliows us to write the
boundary condition in the form of (2).
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body is maintained during sublimation. We shall find
the boundary conditions in the same way as was done
in {2,5], i.e., we shall determine the moments of
boundary condition (2) relative to £, ujuy, uf, u1u2 for
each component of the mixture, i.e., we shall multiply
this condition respectively by £, uu,, u12, u1u2 , and
integrate with respect to ? We shall determine g(t)
from moments with respect to £;. We shall sum over r
the moments with respect to uu,, u? uu? Here we
shall assume that the mass flow velocity of vapor vy

is considerably less than the mean velocity of thermal
motion ¢. In addition, bearing in mind the Navier-
Stokes approximation, we shall consider the quantities
p{5) pt0), Si(r)/p(r)(R(r)T)l/z, the relative slip velocity
vy/a, the relative temperature jump (T — Tg)/T, and
the relative diffusion velocities V.(r)/a to be small (be-
cause variation of velocity, temperature, and con-
centration is small in a mean free path). For simplic-
ity of computation we shall assume also that the ratio

pg)/pg) is small (this is true for the boundary layer

approximation and for Couette flow).
Neglecting derivatives of small quantities, we ob-

tain
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Condition (2) contains no assumptions relating to
the kinetics of sublimation. However, the following
assumptions are frequently made [6]:

1. The true velocity of evaporation (the mass of
molecules leaving unit surface area in unit time) does
not depend only on the partial pressure of the other
components of the gas mixture, but also on the partial
pressure of the sublimating component, i.e., it is the
same as for equilibrium sublimation.

2. The fraction of incident molecules, condensing
upon collision with the surface, does not depend on the
partial pressure of the other components, nor on the
true rate of evaporation of the given component.
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These assumptions allow us to write down the bound-
ary condition for the distribution function (1) in the
form
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po(l) is the density of saturated vapor of component 1

at the wall temperature T;. By determining the same
moments of expression (6), we obtain a somewhat dif-
ferent form of boundary conditions. In particular, com-
putation of the moment of condition (6) relative to &,

for the sublimating component gives
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The relation obtained for the mass rate of evaporation

differs from the analogous relation presented in [7]

by a coefficient on the right ahead of the brackets.
We shall now express the moments pg), V§r), Sﬁr)

for a binary mixture (r = 1, 2) in the Navier-Stokes

approximation, in terms of the corresponding appro-

priate gradients (see shall neglect thermodiffusion and

pressure diffusion):
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i.e., the coefficients “1(21‘)’ }\g) are not the corre-
sponding coefficients for transfer of component r, but
depend on collisions of molecules of a given component
both with molecules of the same type r, and withmole-
cules of the other component.

Starting from the approximate formulas for the
viscosity and thermal conductivity of the mixture given
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in [7], we may write the coefficients u(l) and “1 2,
7\(1) and }\(2) in the following form:
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where Gy,, Gy, GYy GY; are functions of the ratio of
the molecular weights of the components and quantities
describing the collision process.

The experimental data on the accommodation coef-
ficients f* are very conflicting. Therefore, for simplic-
ity of calculation, we shall consider that f*{1) = y*@),
ice., o) = o®, Allowing for the assumptions made,
the boundary conditions (3)—(5) may be represented in
the form
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Conditions (7) and (8) are a generalization of the
" well-known boundary conditions for slip and tempera-
ture jump in the case of a binary mixture and a per-
meable surface.

For a multicomponent gas (sublimation of a flat
plate into a vapor of the same composition, or out-
gassing in a boundary layer), taking into account the
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well~-known relations u = pl (2RT/7r)1/2, A= (15/4)Ru,
conditions (7)~(9) take the following form:
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It should be noted that the slip condition (10) does
not contain the velocity v, inthe approximation adopted,
i.e., it coincides with the analogous condition in the
case when mass flow through the wall is absent.

NOTATION

p(r) is the density of component r; p(r) is the partial
pressure of component r; T is gas temperature; T is
wall temperature; RT) is the gas constant of compo-
nent r; 5 is the velomty of the molecule in a fixed co-
ordinate system; v is the mean mass velocity of the
gas mixture;f*(r) =1 - a(T) is the accommodation
coefficient of component r; Dy, is the binary diffusion
coefficient; 1, and u , are viscosities of components
1 and 2; Ay and A, are thermal conductivities of com-
ponents 1 and 2; ¢ is the concentration of the vapor of
the sublimating wall; | is the mean free path length.
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